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Abstract
In this paper a novel analytical method is applied to the problem of transient
heat conduction in a one-dimensional hollow composite cylinder with a time-
dependent boundary temperature. It is known that for such problems in general,
the underlying eigenvalue and residue calculations pose a challenge in practice
because of the computational requirements especially for a cylinder with many
layers. A new approximated analytical solution is derived by a novel application
of the Laplace transformation. As a result, the problem of eigenvalue or
residue computation is avoided. A closed-form solution is presented. A further
comparison of analytical results with numerical models demonstrates a high
accuracy of the developed analytical solution.

PACS numbers: 02.10.Ud, 02.30.Jr, 05.60.Cd

1. Introduction

The study of transient heat conduction in hollow composite cylinders is important in many
areas of science and engineering such as thermodynamics, fuel cells, electrochemical reactors,
high density microelectronics, composite materials, solidification processes and many others.
Significant progress in numerical techniques to obtain solutions of heat conduction problems
has solidified fundamental knowledge in many engineering applications. However, the classic
way of finding analytical solutions is obviously very important in estimating material properties
and validating numerical solutions.

Theoretically, analytical methods for the heat conduction problem in cylindrical and
Cartesian coordinates are exactly the same. The common applied techniques are finite integral
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transformations which are often applied to the problem in a single-layer material: Green
functions, orthogonal expansions and the Laplace transformation [1]. The first two techniques
inherit associated eigenvalue problems which may become much more complicated if the
slab has many layers. The third technique, the Laplace transformation, often yields a residue
computation. In a composite slab, the residue computation is accomplished by directly and
numerically searching for the roots of a hyperbolic equation, finding the derivatives of the
equation and evaluating and summing the residues. The calculation procedure is tedious if
the slab has more than two layers, as numerical searching for roots has to be made with a very
fine increment for the inverse Laplace transformation to prevent missing roots which can lead
to a wrong inverse [2].

Due to these mathematical complications, closed-form solutions for heat conduction
problems in a composite slab are rare in literature though the studies are very extensive. In
Cartesian coordinates, closed-form solutions for heat conduction equation were available
for only three-layer composite slab with a constant boundary temperature in 2004 [3].
In cylindrical coordinates, Imber proposed an approximate solution in two-dimensional
cylindrical geometry, which, unfortunately, is of low accuracy and therefore cannot be used in
practical applications [4, 5]. Using the same technique, Monde et al proposed an approximate
solution which can predict the surface temperature and heat flux with a good accuracy in
one- and two-dimensional cases (e.g. [5]). No closed-form solution has been reported for
a hollow composite cylinder with more than three layers. Moreover, in all the above-cited
works, eigenvalue problems need to be solved and have always posed a challenge to analytical
methods. The advantage of analytical methods over numerical methods is hard to recognize.

Recently, an analytical method was developed to tackle the transient heat problem for
a composite slab in Cartesian coordinates subject to a time-dependent temperature change
[6–8]. Unlike most of the traditional methods, the new analytical method involves no numerical
iteration for eigenvalues and residues.

It is worth mentioning that the eigenvalue problems are often inevitable in solving transient
heat conduction equations for a multi-layer slab. In a single-layer slab, the eigenfunction links
the space and time variables when separation of variables is applied. However, in a multi-layer
slab, eigenfunction problems may also be yielded from the boundary conditions presented in
the contacted layers. Hence, eigenvalue problems may exist even for a steady-state heat
conduction problem in a composite slab (e.g. [9]). A detailed literature review of these
methods can be found in [8].

In this paper, the developed analytical method [6] is extended to a cylindrical geometry.
The objective of this study was to derive more general closed-form solutions for the transient
heat conduction problem in a hollow composite cylinder with a time-dependent temperature
change. Compared to the work in cylindrical coordinates reviewed above, first, the boundary
condition is given more generally. Second, there is no need to numerically search for
eigenvalues and residues. Most importantly, a closed-form solution for the transient heat
conduction problem in an n-layer hollow cylinder is given. A further comparison of the
analytical results with the numerical models demonstrates a high accuracy of the developed
analytical solution.

2. Mathematical model

2.1. Model equations

Let an n-layer composite hollow cylinder be represented by cylindrical coordinates as
illustrated in figure 1. The layers are formed with different materials characterized by constant
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Figure 1. Schematic drawing of the composite hollow cylinder.

conductivity, diffusivity and thickness which are presented by λj , kj and lj , j = 1, . . . , n. An
ideal contact between these layers is assumed.

Denoting rj = r0 + l1 + · · · + lj , j = 1, . . . , n, the basic heat conduction equation in
terms of the temperature Tj (t, r) in cylindrical coordinates reads

∂2Tj

∂r2
+

1

r

∂Tj

∂r
= 1

kj

∂Tj

∂t
, r ∈ [rj−1, rj ], j = 1, . . . , n (2.1a)

with boundary and initial conditions

−λ1
∂T1

∂r
(t, r0) = −α+(T1(t, r0) − T+(t)), (2.1b)

Tj (t, rj ) = Tj+1(t, rj ), r ∈ [rj−1, rj ], j = 1, . . . , n − 1, (2.1c)

−λj

∂Tj

∂r
(t, rj ) = −λj+1

∂Tj+1

∂r
(t, rj ), r ∈ [rj−1, rj ], j = 1, . . . , n − 1, (2.1d)

−λn

∂Tn

∂r
(t, rn) = −α−(T−(t) − Tn(t, rn)), (2.1e)

Tj (0, r) = 0, r ∈ [rj−1, rj ], j = 1, . . . , n. (2.1f )

Without losing generality, the initial temperature is assumed to be zero. The surface heat
transfer coefficients for boundaries are denoted by α+ and α−. The boundary temperatures
T+(t) and T−(t) are time dependent.

2.2. Simplification of the problem

First we assume sinusoidal dependence of the boundary temperatures, i.e. T+(t) = a+ cos(ω+t +
ϕ+) and T−(t) = a− cos(ω−t +ϕ−). Furthermore, a solution is given according to the complex
form of the boundary temperatures, namely

T+(t) = a+ eiω+t+iϕ+ , (2.2a)

T−(t) = a− eiω−t+iϕ− . (2.2b)
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Clearly, the solution of equation (2.1) is the real part of the sought-after solution. If there
is no danger of confusion we shall keep the same notations. The solutions for more general
boundary temperatures will be provided later.

3. Solution method

3.1. Analytical solution

Applying the Laplace transformation in equation (2.1), we get the equations in terms of
T̄ j (s, r) as

∂2T̄ j

∂r2
+

1

r

∂T̄ j

∂r
= s

kj

T̄ j , r ∈ [rj−1, rj ], j = 1, . . . , n, (3.1a)

with boundary conditions

−λ1
∂T̄ 1

∂r
(s, r0) = −α+(T̄1(s, r0) − T̄+(s)), (3.1b)

T̄ j (s, rj ) = T̄ j+1(s, rj ), r ∈ [rj−1, rj ], j = 1, . . . , n − 1, (3.1c)

−λj

∂T̄ j

∂r
(s, rj ) = −λj+1

∂T̄ j+1

∂r
(s, rj ), r ∈ [rj−1, rj ], j = 1, . . . , n − 1, (3.1d)

−λn

∂T̄ n

∂r
(s, rn) = −α−(T̄−(s) − T̄ n(s, rn)). (3.1e)

A bar over a function f (t) designates its Laplace transformation on t (e.g. [1]):

f̄ (s) = (f (t)) =
∫ ∞

0
exp(−sτ )f (τ ) dτ. (3.2a)

The Laplace transformation of a convolution is given by [1]

L(f1(t) ∗ f2(t)) = f̄ 1(s)f̄ 2(s) where f1(t) ∗ f2(t) =
∫ t

0
f1(τ )f2(t − τ) dτ. (3.2b)

For the jth layer, the solution of equation (3.1a) can be obtained by a combination of the
modified Bessel functions [10] as

T̄ j (s, r) = AjI0(qj r) + BjK0(qj r), (3.3)

where qj =
√

s
kj

, Aj and Bj are determined by the boundary conditions.

For convenience, we define the following notation:

h0 = α+

λ1q1
, hj = λj+1

λj

√
kj

kj+1
, j = 1, . . . , n − 1, hn = − α−

λnqn

, (3.4a)

ηj = qj rj−1, ξj = qj rj , j = 1, . . . , n. (3.4b)

Inserting equation (3.3) into the boundary conditions and rearranging the resulting equations
yield

A1[I1(η1) − h0I0(η1)] − B1[K1(η1) + h0K0(η1)] = −h0T̄ +, (3.5a)

AjI0(ξj ) + BjK0(ξj ) − Aj+1I0(ηj+1) − Bj+1K0(ηj+1) = 0, j = 1, . . . , n − 1, (3.5b)
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AjI1(ξj ) − BjK1(ξj ) − Aj+1hjI1(ηj+1) + Bj+1hjK1(ηj+1) = 0, j = 1, . . . , n − 1,

(3.5c)

An[I1(ξn) − hnI0(ξn)] − Bn[K1(ξn) + hnK0(ξn)] = −hnT̄ −. (3.5d)

The coefficients Aj and Bj can be obtained by solving equation (3.5) as follows:

	(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I1(η1) − h0I0(η1) −K1(η1) − h0K0(η1) 0 0 . . .

I0(ξ1) K0(ξ1) −I0(η2) −K0(η2) . . .

I1(ξ1) −K1(ξ1) −h1I1(η2) h1K1(η2) . . .

. . . . . . . . . . . . . . .

0 0 0 0 . . .

0 0 0 0 . . .

0 0 0 0 . . .

0 0 0 0
0 0 0 0
0 0 0 0
. . . . . . . . . . . .

I0(ξn−1) K0(ξn−1) −I0(ηn) −K0(ηn)

I1(ξn−1) −K1(ξn−1) −hn−1I1(ηn) hn−1K1(ηn)

0 0 I1(ξn) − hnI0(ξn) −K1(ξn) − hnK0(ξn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.6a)

	1
j (s) = −h0

∣∣∣∣∣∣
	(s) with

row − 1 column − 2j − 1
deleted

∣∣∣∣∣∣
	(s)

,

	2
j (s) = hn

∣∣∣∣∣∣
	(s) with

row − 2n column − 2j − 1
deleted

∣∣∣∣∣∣
	(s)

,

(3.6b)

	3
j (s) = h0

∣∣∣∣∣∣
	(s) with

row − 1 column − 2j

deleted

∣∣∣∣∣∣
	(s)

, 	4
j (s) = −hn

∣∣∣∣∣∣
	(s) with

row − 2n column − 2j

deleted

∣∣∣∣∣∣
	(s)

.

(3.6c)

Aj = 	1
j T̄ + + 	2

j T̄ −, Bj = 	3
j T̄ + + 	4

j T̄ −. (3.7)

Equation (3.3) is rewritten as

T̄ j (s, r) = AjI0(qj r) + BjK0(qj r)

= [
	1

j I0(qj r) + 	3
jK0(qj r)

]
T̄ + +

[
	2

j I0(qj r) + 	4
jK0(qj r)

]
T̄ −

= Fj (s, r)T̄ + + Gj(s, r)T̄ −, (3.8a)

where

Fj (s, r) = 	1
j I0(qj r) + 	3

jK0(qj r), Gj (s, r) = 	2
j I0(qj r) + 	4

jK0(qj r). (3.8b)



10150 X Lu et al

The next step is to get the inverse of T̄ j (s, r). Let fj (t, r) and gj (t, r) be the inverse
Laplace transformations of Fj (s, r) and Gj(s, r); then equation (3.8a), together with the
property of the Laplace transformation (3.2b), gives

Tj (t, r) = fj ∗ T+ + gj ∗ T− =
∫ t

0
(fj (τ, r)T+(t − τ) + g(τ, r)jT−(t − τ)) dτ

=
∫ ∞

0
−

∫ ∞

t

(fj (τ, r)T+(t − τ) + gj (τ, r)T−(t − τ)) dτ

≈
∫ ∞

0
(fj (τ, r)T+(t − τ) + gj (τ, r)T−(t − τ)) dτ

=
∫ ∞

0
{fj (τ, r)a+ exp[i(ω+(t − τ) + ϕ+)] + gj (τ, r)a− exp[i(ω− − (t − τ) + ϕ−)]} dτ

= a+ exp[i(ω+t + ϕ+)]
∫ ∞

0
exp(−iω+τ)fj (τ, x) dτ

↑
Laplace transformation of f at iω+

+ a− exp[i(ω−t + ϕ−)]
∫ ∞

0
exp(−iω−τ)gj (τ, x)

↑
Gj (iω−,r)

dτ

= Fj (iω+, r)T+ + Gj(iω−, r)T−. (3.9)

An approximated analytical solution Tj (t, r) has been obtained. Note that a mathematical
trick is made in the above calculation. Taking advantage of the mathematical expression
of the exponential functions T+ and T−, f (t, r) and g(t, r) are replaced by their Laplace
transformations which are already available. Hence, fj (t, r) and gj (t, r) are acting only as
symbolic functions. In this way, a complicated residue calculation is avoided.

Note that the boundary temperatures are in their complex forms. So the final solution for
the jth layer is

Tj (t, r) = real(Fj (iω+, r)T+ + Gj(iω−, r)T−), r ∈ [rj−1, rj ], j = 1, . . . , n.

(3.10)

where ‘real’ represents the real part of the function.

3.2. Solution for more general boundary temperature

For more general time-dependent boundary temperatures, we approximate the temperatures
by Fourier series, i.e.

T+(t) = a+0 +
∞∑

k=1

a+k cos(ω+kt + ϕ+k), (3.11a)

T−(t) = a−0 +
∞∑

k=1

a−k cos(ω−kt + ϕ−k). (3.11b)

The solution of the system equation is the sum of the solution with the constant
boundary temperatures a+0 and a−0 and the solution with boundary temperatures∑∞

k=1 a+k cos(ω+kt + ϕ+k) and
∑∞

k=1 a−k cos(ω−kt + ϕ−k). The second part of the solution
is easily obtained according to the above-discussed theory due to linearity of the equation
system.
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Figure 2. Schematic drawing of the five-layer hollow cylinder.

For the first part of the solution with constant boundary temperatures T+ = a+0 and
T− = a−0, the calculation procedures for the solution are analogous. Hence, equation (3.8)
reads

T̄ j (s, r) = Fj (s, r)T̄ + + Gj(s, r)T̄ − + · · ·
= Fj (s, r)

a+0

s
+ Gj(s, r)

a−0

s
+ · · · . (3.12)

The inverse of the omitted term presents the second solution. Determinants Fj and Gj are the
functions of hyperbolic functions sine and cosine which can be approximated by power series.
Linearization of equation (3.12) gives

T̄ j (s, r) ≈ const

const 1 ∗ s + const 2
+ · · · . (3.13)

The inverse of the first part of the solution is then obtained as const
const 1 exp

(− const 2
const 1 t

)
.

A simpler way of finding the first part of the solution with constant boundary temperatures
is to ignore the transient term which will die away if studies do not focus on the initial
temperature change. Then the solution is approximated by the steady-state one which can be
easily obtained from the thermal resistance of the n-layer hollow cylinder [1].

4. Example

4.1. Material parameters

A five-layer hollow composite cylinder was selected to demonstrate the calculations. The
schematic picture is shown in figure 2. The composition is an extension of the three-layer slab
employed as an exterior wall structure in our test house which has been used to evaluate the
accuracy of the developed analytical method for predicting the evolution of the temperature
distributions inside the wall subject to interior and exterior climatic conditions. Normally, the
interior temperature is assumed to be constant and the exterior temperatures are measured.
The main material of the wall is mineral wool (200 mm) with the wall paper (25 mm) and
the gypsum board (13 mm) as boundary materials. These materials are presented as layers 1,
4 and 5 in figure 2 and their physical properties are provided in table 1. More practical
background of this example has been given in [9].

In the calculation example presented in this paper, the three-layer wall construction is
extended to three-layer and five-layer structures in cylindrical coordinates. In the five-layer
composition displayed in figure 2, two more materials (brick and concrete) are added whose
physical properties are provided in table 1. We compare only the analytical and numerical
results for the five-layer composition, because (1) the comparison results for the three-layer
composition have not shown any substantial change and (2) the five-layer composition can
better demonstrate the capability of the developed analytical method.
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Table 1. Properties and dimensions of the composite hollow cylinder.

Thermal conductivity Thermal diffusivity Thickness
Layer (W m−1 K−1) (m2 s−1) (mm)

1 0.23 4.11 × 10−7 50
2 0.0337 1.47 × 10−6 100
3 0.9 3.75 × 10−7 100
4 0.147 1.61 × 10−7 200
5 0.12 1.5 × 10−7 20

Table 2. Parameters of equation (4.1).

ω1 30.0 ω2 5.0 ω3 2.0 ω4 1.0
ϕ+1 5.149 231 ϕ+2 16.779 94 ϕ+3 −0.678 84 ϕ+4 4.381 328

a+0 17.0 a+1 1.919 486 a+2 0.732 953 a+3 −0.258 24 a+4 0.132 831
ϕ−1 5.607 506 ϕ−2 13.595 96 ϕ−3 1.451 539 ϕ−4 5.418 717

a−0 5.0 a−1 2.722 17 a−2 –5.019 664 a−3 1.084 058 a−4 0.4648

The dimensions of the composition are given in table 1. The surface heat transfer
coefficients were assumed to be α− = 25 W m−2 K−1 and α+ = 6 W m−2 K−1.

4.2. Boundary temperatures

As stated earlier, we are interested in predicting the evolution of the temperature distributions
inside the structure subject to interior and exterior climatic conditions. Hence, in the example,
the boundary temperatures were taken from the measurements and then fitted with periodic
functions with periods 30, 5, 2 and 1 day as

T+(t) = a+0 +
4∑
1

a+i cos

(
2πt

ωi

− ϕ+i

)
, (4.1a)

T−(t) = a−0 +
4∑
1

a−i cos

(
2πt

ωi

− ϕ−i

)
, (4.1b)

where fitting parameters are listed in table 2 and figure 3 shows the values.
The time period of the measurement was 30 days. The fitting periods, 30, 5, 2 and 1 day,

were just randomly chosen and the fitting parameters were generated then by using Microsoft
Excel software. Theoretically, any piecewise function can be approximated by Fourier series.
To the authors’ knowledge, there are many kinds of software which are able to approximate
a common function using Fourier series by, for instance, the fast Fourier transform (FFT)
method. The more Fourier terms that are included the better the approximation. Functions
with sharp corners need more Fourier terms. Therefore, the needed number of terms depends
very much on the desired accuracy. Because the main purpose of this study was to evaluate
the accuracy of the developed analytical solution, a rough approximation of the boundary
condition was made in this calculation. Discussion of the methods of approximating an
arbitrary function by Fourier series is outside the scope of this study. Interested readers can
refer to the relevant textbooks (e.g. [11]).

4.3. Comparison of the analytical and numerical results

The calculations were made in the central points of layers represented as layer 1 to layer 5
in figure 2. As the evolution of temperature in layer 5 is very close to that in layer 4, only
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Figure 3. Variation of boundary temperature.
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Figure 4. Comparison of analytical and numerical results.

the transient temperature variations in layer 1 to layer 4 are illustrated. Figure 4 presents the
results given by the analytical and numerical methods. The temperature values were calculated
so that the time step was in seconds and were stored in files as hourly values and shown in
figures as hourly and daily values. It can be seen that the discrepancies between numerical
and analytical results are hardly noticeable. The maximal discrepancy is within 1.5 ◦C at the
time just after t = 0 with a relative error of 6%. This is mainly due to the rough estimation of
the initial temperature distribution in the composition in the numerical calculations.

The bigger discrepancies of the analytical and numerical results are shown in detail in
figure 5. The numerical values quickly approached the analytical values. The example
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demonstrates a high accuracy of the developed analytical solution. Discussion of the validation
of the numerical model can be found in [6] for example.

5. Discussion

A closed-form solution of transient heat conduction in an n-layer hollow cylinder is provided.
We make some observations.

• It is known that any periodic and piecewise continuous function can be approximated
using Fourier series. A non-periodic function can also be approximated using Fourier
series in an extended interval. As demonstrated in the example, the boundary temperatures
can be any time-dependent functions. In the example, the boundary temperatures were
taken from the measurements and then fitted with a sum of cosines. Therefore, the
analytical results obtained in this paper are the solutions for heat conduction problems
in a composite cylinder with general boundary conditions. Boundary conditions are not
restricted to periodic ones as demonstrated in the example.

• Compared with numerical methods, the developed analytical method is easier to
implement. The calculation includes only simple computation of determinants which can
be easily accomplished by commercial mathematical packages such as Maple, Matlab
and Mathematica. Furthermore, for any jth layer, only five sparse matrices are involved.
The calculation load is small and the computing time is short.

• For any jth layer and a given boundary temperature, Fj (s, r) and Gj(s, r) in
equation (3.10) are acting as ‘transfer’ functions from which the attenuated temperature
amplitude and the time lag in the jth layer can be obtained. Moreover, expressing Fj (s, r)

and Gj(s, r) as the algebraic functions of parameter kj , for instance, the effect of different
physical properties on the temperature can be studied and analysed.

• The proposed method relies on the approximations in equations (3.9) and (3.13). For small
values of t, the accuracy may be low. But we have not found any calculational evidence.
Comparison of analytical and numerical results shows that the analytical solutions are
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accurate also for small values of t. The estimation of the magnitudes of the omitted terms
in equations (3.9) and (3.13) will be done in the future.

• In engineering applications, the accuracy of the developed method depends on that of
the Fourier series approximation of the boundary temperatures. Better approximation
of the temperatures can improve the accuracy of the solution. Nevertheless, it is worth
mentioning that the accuracy problem is not an inherent error due to the analytical method
developed in this paper.

6. Conclusions

An analytical approach to the heat conduction problem in a composite hollow cylinder with a
general time-dependent boundary condition has been presented. The boundary temperatures
were approximated using Fourier series. The technique of Laplace transform was employed.
An approximate analytical solution was obtained by approximating the inverse Laplace
transform without evaluating residues.

The method is shown to have considerable potential in solving heat conduction equations.
Compared to the analytical solutions that are mainly possible with certain assumptions, the
developed method has no restrictions and is flexible with regard to boundary conditions.
Moreover, the benefit of the results is the simple and concise mathematical forms of the
solutions which can be used to analyse physical properties in combination with material
properties in heat transfer process. Agreement with numerical solutions is good. In a general
heat conduction context, however, numerical schemes are usually necessary. The proposed
approach is free of these restrictions.
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